

ARB-OEHHA Status Report on AB 1900 Efforts

Presentation to the CPUC Initial Workshop for Rulemaking 13-02-008 March 27, 2013

ī

Overview

- AB 1900
- ARB-OEHHA Process
- Progress to Date
 - List of Constituents and Health Values
 - Risk Evaluation
 - Risk Evaluation"101"
 - Exposure Scenarios and Preliminary Findings
 - Identification of Constituents of Concern
 - Health Protective Levels for Constituents of Concern
- Next Steps

AB 1900

- Requires CPUC to adopt standards by Dec 31, 2013 for biomethane injected into the common carrier pipeline that:
 - (I) protect public health
 - (2) ensure pipeline integrity and safety
- ARB to propose health based standards for constituents of concern in biomethane by May 15, 2013
 - In consultation with OEHHA, DTSC, CalRecycle, and Cal-EPA
 - ARB is also to provide recommendations on monitoring, testing, reporting, and recordkeeping requirements
 - CPUC to give "due deference" to ARB recommendations

3

AB 1900 ARB-OEHHA Tasks

- Compile list of constituents of concern in biogas (OEHHA)
- Determine health protective levels for constituents (OEHHA)
- Identify realistic exposure scenarios (ARB)
- Determine appropriate concentrations of constituents (ARB)
- Identify reasonable monitoring, testing, reporting, and recordkeeping requirements (ARB)
- Due May 15, 2013, with updates at least every five years

Process

- ARB-OEHHA develops recommended health based standards
 - Informal public process
 - Relying on existing sources of data
- CPUC to adopt standards through their regulatory process
 - CPUC give due deference to ARB/OEHHA recommendations
- Anticipate two public workshops under the CPUC process (includes today's meeting)

5

ARB-OEHHA Informal Public Process

- Established Website
 - www.arb.ca.gov/energy/biogas/biogas.htm
- List Serve
 - Sign up at http://www.arb.ca.gov/listserv/listserv_ind.php?listname=biogas
- Posted update on activities December 2012
 - Invite stakeholders to provide pertinent information
- Meet with interested parties upon request
- Coordinate with other State agencies

Focus

- Biogas generated from larger sources with greatest potential for injection into the pipeline
 - Landfills, dairies, and POTW's (sewage treatment)
- Analyzing available data from both raw biogas and biomethane (treated biogas)
 - Primary focus on directly emitted emissions,
 GTI studies primary source of data
- Can address additional sources of biogas in AB 1900-mandated updates

7

Progress to Date

Sources of Data for List of Constituents

- Landfill
 - Gas Technology Institute (2009 and 2012 reports)
 - Los Angeles County Sanitation District (2009-2012 data)
 - U.S. EPA (AP-42 2008 Update)
 - U.K. Landfill study
- Dairy
 - Gas Technology Institute (2009 Dairy report)
- POTWs (Sewage Treatment)
 - Gas Technology Institute (2009 report)
 - Orange County Sanitation District
 - South Coast AQMD
- Natural Gas
 - Gas Technology Institute (2009 and 2012 reports)
 - Natural Gas analysis provided by Air Liquide
- Additional data from selected biogas studies available in the scientific literature

List of Constituents

- Identified approximately 270 chemicals and chemical groups in biogas
 - All are at trace levels—total Non-Methane Organic Carbon (NMOC) ~ 0.1% of gas
- Many of these are likely biologic or chemical degradation products of biological materials
- Scientific Literature: 13 additional constituents

11

Progress to Date

Identification of Health Values

- Used four main sources of toxicity data and risk values for risk evaluation:
 - OEHHA Reference Exposure Levels (RELs) for non-carcinogens, and Cancer Slope Factors for carcinogens
 - U.S. EPA Reference Concentrations and Cancer Slope Factors
 - ATSDR Minimal Risk Levels (MRLs)
 - · Worker protection values from OSHA, NIOSH, or ACGIH
 - · Most protective value used, adjustments and safety factors applied
- Developed several screening values based on surrogate chemicals
- Defined several toxicologically similar chemical groups and provided screening values

Health Values - Results

- Identified risk-screening values for ~180 constituents
- Defined surrogate screening values for ~25 additional chemicals and groups

13

Progress to Date

Risk Evaluation

- Health Risk Assessment (HRA) "101"
 - Use emissions and mathematical model to estimate exposure concentrations
 - Use OEHHA recommended health values and exposure assumptions to estimate:
 - Potential Cancer Risk
 - Evaluation of the potential for a chemical to cause cancer, expressed as number of excess cancers in a population of a million over a specified exposure duration
 - Acute and Chronic Hazard Quotient
 - The ratio between the exposure concentration and Reference Exposure Level for an individual compound

Exposure Scenarios Evaluated

- Three Exposure Scenarios
 - Two Residential
 - · Leak in a home
 - Stovetop pre-ignition phase
 - One Worker
 - · Losses at a biogas production facility
- Four Gas Streams
 - Natural Gas, POTWs, Landfills, Dairy
- Conservative Assumptions
 - Assumed 100% biogas/biomethane in the pipeline
 - Used highest measured concentrations for constituents

15

Progress to Date

Residential Exposure Scenario - Leak

- Residential Leak Scenario
 - Leak is 0.7% of the average household consumption
 - 0.003 m³/hour
 - · Below smell detection level
 - Assume I-year exposure
- Indoor Box Model
 - Home Air Exchange Rate 0.54
 - ∘ Home Size − 1,700 ft²
 - Kitchen Size 475 ft²
- Draft Dilution Ratios
 - \circ Draft 24 Hour Dilution Value 3.31 x 10⁻⁵
 - Draft I Hour Max Dilution Value − 1.27 x 10-4

Residential Exposure Scenario-Stovetop

Stovetop Pre-Ignition Phase

- 5 second pre-ignition phase
- Two 2 hour cook periods per day (4 hours total)
- Time decay analysis to determine emission factors
- Assume 30-year exposure

Draft Dilution Ratios

- Draft 24 Hour Dilution Value 5.21 x 10⁻⁶
- Draft I Hour Max Dilution Value 4.81 x 10⁻⁵

References

- EPA Introduction to Indoor Air Modeling
- Risk Assessment of Biogas Exposure in Kitchens (France/UK)

17

Progress to Date

Worker Exposure Scenario – Biogas Facility

Production Facility Leak Scenario

- Leak is 0.1% of the average biogas production
 - 0.89 m³/hour
 - Below the smell detection level
- Assume 25-year exposure

Indoor Box Model

- Production Facility Air Exchange Rate 1.4
- Biogas Production Facility Size 2,500 ft²
- Biogas Production 750,000 ft³ per day

Draft Dilution Values

Draft 24 Hour and 1 Hour Max Dilution Value – 4.46 x 10-4

Preliminary Findings for Potential Cancer Risks

- Based on preliminary HRA, for the gas streams analyzed:
 - Landfill biogas (raw) and pipeline quality natural gas have similar potential cancer risk
 - Biomethane from Landfill, POTWs and Dairy lowest potential cancer risk
 - All biomethanes (treated) have lower potential cancer risk than pipeline quality natural gas

Acute & Chronic Preliminary Findings*

Chronic Hazard Quotient

- 83 Constituents with Chronic RELs
- 10 constituents with Chronic Hazard Quotient greater than 0.01 in biogas/biomethane
- 13 constituents with Chronic Hazard Quotient greater than 0.01 in natural gas

Acute Hazard Quotient

- 43 Constituents with Acute RELs
- 3 constituents with Acute Hazard Quotient greater than 0.01 in biogas/biomethane
- I constituent with Acute Hazard Quotient greater than 0.01 in natural gas

* For the gas streams analyzed

21

Progress to Date

Process for Identifying Constituents of Concern (CoCs)

- CoCs identified on a per-chemical basis
- Calculated non-cancer Hazard Quotients (HQs) and cancer risks for chemicals and groups
 - Used the highest modeled concentration
 - Used OEHHA methodology for calculations of exposure and risk
 - Focused on health effects of inhalation exposures

Process for Identifying Constituents of Concern (cont)

- Criteria for identification of CoC
 - For chemicals with quantified risks, CoCs are those with values greater than specified risk-thresholds
 - May add individual chemical, if judged to be of concern based on further evaluation
- CoC risk-thresholds for chemicals with quantified risks:
 - Residential: 0.01 for HQs and I in a million for cancer risks
 - Worker: 0.3 for HQs and 30 in a million for cancer risks

23

Progress to Date

Preliminary Results for Constituents of Concern

- Identified ~ 15 CoCs
 - All have quantified risk values
 - Are continuing to evaluate the data to further refine the list
 - Some may drop out after comparison with NG
- 13 of the CoCs were present in biogas (raw)
- 6 of the CoCs were present in biomethane (treated)

Preliminary List of Constituents of Concern in Biogas/Biomethane

- Arsenic*
- Benzene*
- Vinyl Chloride*
- p-Dichlorobenzene*
- N-Nitroso-di-npropylamine*
- Ethylbenzene*
- Hydrogen sulfide

- Antimony
- Methylmercaptan
- Methacrolein
- Toluene
- i-Propyl-mercaptan
- Copper
- Lead
- Manganese

25

Progress to Date

Identifying Health Protective Levels for Constituents of Concern

- Once the CoC list is finalized, health protective concentrations will be identified.
- OEHHA intends to :
 - Use exposure and risk formulae to calculate health protective concentrations for CoCs with quantified risk values
 - Use expert judgment to determine appropriate recommendations for any CoC judged to be a concern based on additional evaluation

^{*} Denotes the chemical is a carcinogen

Next Steps

- Finalize CoC list and identify health protective concentrations (OEHHA)
- Identify reasonable monitoring, testing, reporting, and recordkeeping requirements (ARB)
- Meet with interested stakeholders upon request
- Prepare recommendations for 2nd CPUC Workshop
- Report of findings to CPUC
 - ARB-OEHHA to provide technical resources to CPUC during rulemaking
- On-going efforts to improve health and technical data for AB-1900 mandated updates

27

Contact Information

Staff	Agency	Email	Phone
Dr. Andy Salmon Chief, Air Toxicology and Risk Assessment Section	ОЕННА	Andy.Salmon@oehha.ca.gov	(510) 622-3191
Paul Milkey Staff Air Pollution Specialist	ARB	pmilkey@arb.ca.gov	(916) 327-2957

- Website
 - http://www.arb.ca.gov/energy/biogas/biogas.htm